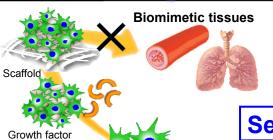
Bionic Synthesizerによる血管様多層組織の弾性繊維形成評価

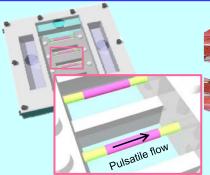
万 〇山岸由佳¹,益田泰輔¹,松崎典弥²,明石満²,横山詩子³,新井史人¹


1. 名古屋大学大学院 工学研究科, 2. 大阪大学大学院 工学研究科,

3. 横浜市立大学大学院 医学研究科

バイオアセンブラの新しい知見:生体模倣力学刺激が自己組織的に血管を造る

Only assembling from cells


- ·Low cell density
- ·Low elasticity
- •Different structures...

Not Biomimetic

\bigcirc

Self-organization

- in Biomimetic Environment
 - Culture condition
 - · Mechanical, chemical stimulus
 - Position

Bionic Synthesizer

Biomimetic Structure Biomimetic Strength Biomimetic Stimulus

Purpose

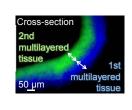
OFabrication of tubular tissues with high stiffness and high cell density having 0.8 MPa (native blood vessel)
OCirculation culture in 3D structure mimicking in-vivo environments

Fabrication

BEL method using residual stress (Bio-assembly by Expansion and Lamination)

1. Expansion

PLCL substrate


2. Lamination

Multilayered tissue

M. Matsusaki et al. Adv. Mater, 2011

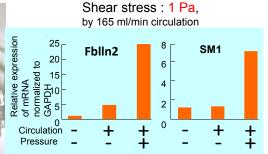
3. Assembly

Experiments

Ref: U. Yokovam

Culture condition

•10 layer mouse smooth muscle cell + 1 layer mouse vascular endothelial cell


Fubular tissue

5 <u>m</u>m

- DMEM with 1% FBS
- PLCL substrate coated with Fibronectin and collagen
- Circulation flow rate: 165 ml/min
- •Pressure: Δ800 Pa

Circulation culture system

165 ml/min

Observation of fabricated tissue

Conclusions

- We fabricated tubular tissues with high elasticity and high cell density,
 3 mm in diameter and 10 mm in length.
- Long-term circulation culture system was fabricated.
- Expression of Fiblin2 and SM1 were increased by circulation with pulsatile pressure.

Reference

□ Yuka Yamagishi, et al., "Bionic synthesizerによる血管様多層組織の弾性繊維形成評価", 1P24, 29th Cheminas

